Entreposage et fouille de données
Code UE : STA211-PAR
- Cours
- 9 crédits
- Volume horaire de référence
(+ ou - 10%) : 70 heures
Responsable(s)
Ndeye NIANG KEITA
Vincent AUDIGIER
Public, conditions d’accès et prérequis
être admis en M2 du master STIC, mention statistique ou être agréé.
La demande d'agrément est à faire uniquement pour les auditeurs qui souhaitent suivre STA211 en présentiel au semestre 1. Pour obtenir l'agrément, les auditeurs adresseront, à partir du 25 Août, par courrier électronique à l'enseignant responsable : ndeye.niang_keita@cnam.fr, un CV détaillé et une lettre de motivation indiquant les raisons de la demande et le projet pédagogique dans lequel elle s'inscrit . Une réponse sera donnée dans un délai d'une dizaine de jours.
Niveau requis : NFA008 (bases de données) et STA101 (analyse des données, méthodes descriptives). Ces prérequis sont indispensables pour obtenir l'agrément. Vérifier avant d'envoyer une demande d'agrément.
La demande d'agrément est à faire uniquement pour les auditeurs qui souhaitent suivre STA211 en présentiel au semestre 1. Pour obtenir l'agrément, les auditeurs adresseront, à partir du 25 Août, par courrier électronique à l'enseignant responsable : ndeye.niang_keita@cnam.fr, un CV détaillé et une lettre de motivation indiquant les raisons de la demande et le projet pédagogique dans lequel elle s'inscrit . Une réponse sera donnée dans un délai d'une dizaine de jours.
Niveau requis : NFA008 (bases de données) et STA101 (analyse des données, méthodes descriptives). Ces prérequis sont indispensables pour obtenir l'agrément. Vérifier avant d'envoyer une demande d'agrément.
L'avis des auditeurs
Les dernières réponses à l'enquête d'appréciation pour cet enseignement :
Présence et réussite aux examens
Pour l'année universitaire 2022-2023 :
- Nombre d'inscrits : 86
- Taux de présence à l'évaluation : 48%
- Taux de réussite parmi les présents : 51%
Modèles prévisionnels et systèmes de gestion de l'entreprise
- structures spécifiques des bases de données de Data warehouse (star schema)
- OLAP
Méthodologies générales
- Méthodologies de Data Mining
Pré-traitement des données
- Analyses de la qualité des données,
- Techniques d'appréhension des valeurs manquantes ou aberrantes
- Techniques de construction de bases de travail (agrégations, etc. . . )
Données et techniques de fouille
Méthodes non supervisées :
- Cartes de Kohonen, Règles d'association
Méthodes supervisées :
- Rappels de théorie de l'apprentissage
- Arbres de décision, forêts aléatoires, Réseaux de neurones, deep learning
- Méta-algorithmes :
- boosting, bagging
Fouille dans de nouveaux types de données et méthodes associées :
- Données textuelles - Données multivues - Images et Multimedia
Outils :
- Environnements freeware : R, Python
- Outils spécifiques : SAS-EM, SPAD
- Data Mining et bases de données : OLAP Business Object
- structures spécifiques des bases de données de Data warehouse (star schema)
- OLAP
Méthodologies générales
- Méthodologies de Data Mining
Pré-traitement des données
- Analyses de la qualité des données,
- Techniques d'appréhension des valeurs manquantes ou aberrantes
- Techniques de construction de bases de travail (agrégations, etc. . . )
Données et techniques de fouille
Méthodes non supervisées :
- Cartes de Kohonen, Règles d'association
Méthodes supervisées :
- Rappels de théorie de l'apprentissage
- Arbres de décision, forêts aléatoires, Réseaux de neurones, deep learning
- Méta-algorithmes :
- boosting, bagging
Fouille dans de nouveaux types de données et méthodes associées :
- Données textuelles - Données multivues - Images et Multimedia
Outils :
- Environnements freeware : R, Python
- Outils spécifiques : SAS-EM, SPAD
- Data Mining et bases de données : OLAP Business Object
- Projet(s)
- Mémoire
- M.BARDOS : Analyse discriminante (Dunod, 2001)
- G.SAPORTA : Probabilités, analyse des données et statistique (Technip, 2006)
- S.TUFFERY : Data mining et statistique décisionnelle (Technip, 2005)
- S.TUFFERY : Etude de cas en statistique décisionnelle (Technip, 2009)
- T.HASTIE, J.FRIEDMAN, F.TIBSHIRANI : Elements of Statistical Learning (Springer, 2009)
- G.GOVAERT (ed) : Analyse des données (Hermes,2003)
- L. LEBART, A. MORINEAU, M. PIRON : Statistique exploratoire multidimensionnelle (1995)
- J.P.NAKACHE, J.CONFAIS : Statistique explicative appliquée (Technip, 2003)
- James, Witten, Hastie, & : An Introduction to Statistical Learning (2013) Téléchargeable ici:http://web.stanford.edu/~hastie/local.ftp/Springer/ISLR_print1.pdf
Cette UE apparaît dans les diplômes et certificats suivants
Rechercher une formation
RECHERCHE MULTI-CRITERES
Plus de critères de recherche sont proposés:
-
Vous pouvez sélectionner des formations grâce à un mot ou à une expression (chaîne de caractères) présent dans l’intitulé de la formation, sa description ou ses index (discipline ou métier).
Des mots-clés sont suggérés à partir du 3e caractère saisi, mais vous pouvez aussi rechercher librement. - Les différents items sélectionnés sont croisés.
ex: "Comptabilité" et "Diplôme" - Les résultats comprennent des formations de la région (UE, diplômes, certificats, stages) et des formations proposées à distance par d'autres centres du Cnam.
- Les codes des formations à Paris se terminent par le suffixe PAR01 (pour le centre Cnam Paris) et PAR02 (pour Cnam Entreprises).
- Certains diplômes se déclinent selon plusieurs parcours. Pour afficher tous les parcours, tapez la racine du code (ex : « LG035 »).
- Dans tous les cas, veillez à ne pas insérer d'espace ni de ponctuation supplémentaire.
Plus de critères de recherche sont proposés:
- Type de diplôme
- Niveau d'entrée
- Modalité de l'enseignement
- Programmation semestrielle
Chargement du résultat...
Intitulé de la formation |
Type |
Modalité(s) |
Lieu(x) |
|
---|---|---|---|---|
Intitulé de la formation
Certificat de spécialisation Analyste de données massives
|
Lieu(x)
À la carte
|
|||
Intitulé de la formation
Certificat de spécialisation Bio-informatique avancée
|
Lieu(x)
À la carte
|
Lieu(x)
Paris
|
||
Intitulé de la formation
Master Droit, économie et gestion mention Finance Parcours Finance de marché et gestion des capitaux
|
Lieu(x)
Package
|
Lieu(x)
Paris
|
||
Intitulé de la formation
Master Informatique — Parcours Traitement de l'information et exploitation des données (TRIED)
|
Lieu(x)
Package
|
Lieu(x)
Paris
|
||
Intitulé de la formation
Master Sciences des données
|
Lieu(x)
Package
|
Lieu(x)
Paris
|
||
Intitulé de la formation
Master Sciences des données
|
Lieu(x)
À la carte
|
Lieu(x)
Liban
|
||
Intitulé de la formation | Type | Modalité(s) | Lieu(x) |
Contact
EPN06 Mathématiques et statistiques
2 rue conté Accès 35 3 ème étage porte 19
75003 Paris
Sabine Glodkowski
2 rue conté Accès 35 3 ème étage porte 19
75003 Paris
Sabine Glodkowski
Voir le site
Centre(s) d'enseignement proposant cette formation
-
Paris
- 2024-2025 2nd semestre : Formation ouverte et à distance (FOAD)
- 2026-2027 2nd semestre : Formation ouverte et à distance (FOAD)
Comment est organisée cette formation ?2024-2025 2nd semestre : Formation ouverte et à distance
Dates importantes
- Période des séances du 03/02/2025 au 07/06/2025
- Période d'inscription : du 10/06/2024 à 10:00 au 14/03/2025 à 17:00
- Date de 1ère session d'examen : la date sera publiée sur le site du centre ou l'ENF
- Date de 2ème session d'examen : la date sera publiée sur le site du centre ou l'ENF
Précision sur la modalité pédagogique
- Une formation ouverte et à distance (FOAD) est une formation dispensée 100% à distance, qui peut être suivie librement, à son rythme.
- Regroupements physiques facultatifs : Aucun
Organisation du déploiement de l'unité
- Nombre d'élèves maximum à distance par classe : 80
- Nombre d'heures d'enseignement par élève : 77
- Délai maximum de réponse à une solicitation : sous 96 heures (Jours ouvrés)
Modes d'animation de la formation
- Forum
- Organisation d'une séance de démarrage
- Evaluation de la satisfaction
- Hot line technique
Ressources mises à disposition sur l'Espace Numérique de Formation
- Documents de cours
- Enregistrement de cours
- Documents d'exercices, études de cas ou autres activités pédagogiques
- tests de connaissance QCM
Modalité de contrôle de l'acquisition des compétences et des connaissances (validation de l'UE)
- Projet(s) individuel(s)
Code UE : STA211-PAR
- Cours
- 9 crédits
- Volume horaire de référence
(+ ou - 10%) : 70 heures
Responsable(s)
Ndeye NIANG KEITA
Vincent AUDIGIER