Ingénierie de la fouille et de la visualisation de données massives

Code UE : RCP216-PAR01

  • Cours + travaux pratiques
  • 6 crédits
  • Volume horaire de référence
    (+ ou - 10%) : 50 heures

Responsable(s)

Michel CRUCIANU

Public, conditions d’accès et prérequis

Bonnes connaissances mathématiques et statistiques générales, maîtrise de méthodes statistiques pour la fouille de données, connaissance de techniques de gestions de données massives faiblement structurées, connaissance de techniques de passage à l'échelle par distribution. Capacité à utiliser le système d'exploitation Linux, connaissance d'au moins un langage de programmation.
Vous êtes encouragés à évaluer votre capacité à suivre cette UE en répondant au questionnaire en ligne accessible sur http://cedric.cnam.fr/vertigo/Cours/RCP216/questionnaire.html. Vous pouvez répondre sans vous identifier, les réponses vous sont données immédiatement et les résultats ne sont pas enregistrés.

Présence et réussite aux examens

Pour l'année universitaire 2021-2022 :

  • Nombre d'inscrits : 86
  • Taux de présence à l'évaluation : 47%
  • Taux de réussite à l'évaluation : 65%

Objectifs pédagogiques

Cet enseignement s'intéresse à l'impact des caractéristiques des données massives (volume, variété, vélocité) sur les méthodes de fouille de données. Sont examinées les approches actuelles qui permettent de faire passer à l'échelle les méthodes de fouille, en insistant sur les spécificités des opérations de fouille en environnement distribué.
Les caractéristiques mentionnées sont ensuite considérées de façon plus spécifique pour certains problèmes fréquents dans le traitement des données massives. Sont ainsi abordés les systèmes de recommandation et la recherche efficace par similarité, la classification automatique et l'apprentissage supervisé sur une plate-forme distribuée, les opérations spécifiques au traitement des données textuelles souvent hétérogènes, les implications de la vélocité sur la fouille de flux de données, l'analyse de grands graphes et de réseaux sociaux.
L'UE s'intéresse également au rôle de la visualisation et de l'interaction, non seulement dans la présentation des résultats mais aussi dans les opérations de fouille de données.

Compétences visées

Capacité à réaliser la fouille de données massives en utilisant une plate-forme de calcul distribué (Spark) via JupyterHub. Capacité à mettre en place un système de recommandation. Capacité à réaliser la fouille de textes en exploitant des encodages (word embeddings) et des modèles de langage (language models) en se servant d'une bibliothèque logicielle évoluée (SparkNLP). Capacité à concevoir une visualisation pertinente des données. Capacité à traiter des données en flux. Capacité à construire des modèles descriptifs et décisionnels sur des données massives. Capacité à évaluer des critères observationnels d'équité des prédictions et à modifier un modèle prédictif pour respecter des critères d'équité.

1. Introduction : applications, typologie des données, typologie des problèmes
2. Approches : réduction de la complexité, distribution
3. Passage à l'échelle de quelques problèmes fréquents
            a. Recherche par similarité, systèmes de recommandation
            b. Classification automatique
            c. Fouille de données textuelles
            d. Fouille de flux de données
            e. Apprentissage supervisé à large échelle
            f. Fouille et visualisation de graphes et réseaux sociaux
4. Visualisation d'information : historique, applications, outils
5. Aspects éthiques dans la fouille de données
Le cours est complété par des travaux pratiques (TP) permettant de mettre en pratique des techniques présentées. Pour la partie fouille de données, les TP seront réalisés à l'aide de Apache Spark. Pour le travail sur le projet les auditeurs peuvent utiliser le JupyterHub du Cnam.
Les supports de cours et de TP, ainsi que d'autres explications concernant le déroulement de l'UE sont accessibles à partir de http://cedric.cnam.fr/vertigo/Cours/RCP216/

Note finale = ((note de projet + note d'examen) / 2).

  • Ryza, S., U. Laserson, S. Owen and J. Wills : Advanced Analytics with Spark, O'Reilly, 2014.
  • A. Rajaraman and J. D. Ullman : Cambridge University Press, New York, NY, USA, 2014.

Cette UE apparaît dans les diplômes et certificats suivants

Contact

EPN05 - Informatique
2 rue Conté
75003 Paris
Tel :01 40 27 22 58
Swathi Rajaselvam

Centre(s) d'enseignement proposant cette formation

  • Centre Cnam Paris
    • 2023-2024 1er semestre : FOAD 100%
    • 2023-2024 2nd semestre : Présentiel soir ou samedi
    Comment est organisée cette formation ?

    Organisation de la modalité FOAD 100%

    Planning

    Aucun planning pour le moment

    Précision sur la modalité pédagogique

    • Regroupements physiques facultatifs : Aucun

    Organisation du déploiement de l'unité

    • Nombre d'élèves maximum à distance par classe : 65
    • Nombre d'heures d'enseignement par élève : 60
    • Délai maximum de réponse à une solicitation : sous 96 heures (Jours ouvrés)

    Modes d'animation de la formation

    • Forum
    • Visioconférence
    • Organisation d'une séance de démarrage
    • Evaluation de la satisfaction
    • Hot line technique

    Ressources mises à disposition sur l'Espace Numérique de Formation

    • Documents de cours
    • Enregistrement de cours
    • Documents d'exercices, études de cas ou autres activités pédagogiques
    • Outils spécifiques (exerciseur, simulateurs, etc)

    Activités "jalons" de progression pédagogique prévues sans notation obligatoire à rendre ou en auto-évaluation

    • 20 exercices
    • 1 étude de cas, projet individuel

    Modalité de contrôle de l'acquisition des compétences et des connaissances (validation de l'UE)

    • Examens présentiels dans un centre habilité
    • Projet(s) individuel(s)
    :