Optimisation en informatique

Code UE : RCP104-PAR01

  • Cours + travaux pratiques
  • 6 crédits

Responsable(s)

Cedric BENTZ

Public et conditions d'accès

Elèves ingénieurs, étudiants de master M1.
Prérequis : avoir des connaissances de base en algorithmique, réseaux informatiques, programmation, graphes et recherche opérationnelle.

Objectifs pédagogiques

A partir de problèmes concrets en informatique (majoritairement, mais pas exclusivement, issus des réseaux de télécommunication), apprendre à traiter des problèmes difficiles de la recherche opérationnelle : savoir écrire un modèle mathématique et proposer des méthodes, optimales ou non (mais efficaces malgré tout), utilisant des outils pratiques pour résoudre ces problèmes (méthodes heuristiques, programmation linéaire et logiciels).

Compétences visées

L'étudiant ayant suivi cet enseignement sait reconnaître et modéliser un problème de recherche opérationnelle. Il sait le résoudre avec des outils simples. Il sait en particulier aborder certains problèmes d'optimisation combinatoire dans les réseaux informatiques.

1- Présentation de l'ensemble du cours à partir d'un problème d'optimisation concret (localisation). Le problème est-il difficile (du point de vue de la complexité) ? Si oui, comment écrire un modèle mathématique ? Ce modèle permet-il d'obtenir de façon suffisamment efficace une solution optimale à l'aide d'un logiciel ? Si oui, l'étude est terminée. Sinon, comment obtenir une solution approchée et comment valider la solution trouvée ?
2- Apprendre à écrire un programme mathématique : choisir les variables, déterminer leurs domaines, écrire l'objectif et les contraintes. Particularité des modèles en variables binaires ou entières. Travail sur des "cas d'école" : partition de graphes (clustering), coloration (planification), etc.
Application à divers problèmes réels : dimensionnement/conception de réseaux, routage multicast dans les réseaux, placement de copies de fichiers, etc.
3- Apprendre à transformer un problème d'optimisation non linéaire en un programme linéaire de façon à pouvoir utiliser les logiciels. Techniques de linéarisation, prise en compte de rapports ou de produits de variables, etc.
4- Résolution approchée de problèmes difficiles par des méthodes générales (recuit simulé, méthode tabou, algorithmes génétiques, etc.) ou par des méthodes spécifiques (heuristiques ad-hoc). Validation des résultats obtenus par les heuristiques à l'aide de bornes basées, par exemple, sur la résolution du problème (ou d'une relaxation) par un solveur (ou logiciel de résolution).
5- Utilisation d'un solveur libre d'accès (par exemple, GLPK) par le biais d'un modeleur (GMPL) ou du format de fichier LP. Mise en oeuvre sur ordinateur pendant certaines séances.  Rappel des principes de la programmation linéaire, et introduction aux techniques de résolution de programmes linéaires en nombres entiers.
6- Étude d'un cas réel, sous la forme d'un projet ou d'un (ou plusieurs) TP noté.

Examen noté sur 16.
Projet ou TP noté sur 4.
 

  • Alain Billionnet : Optimisation discrète (Dunod)
  • Philippe Lacomme, Christian Prins, Marc Sevaux : Algorithmes de graphes (Eyrolles)
  • Johann Dréo, Alain Pétrowski, Patrick Siarry, Eric Taillard : Métaheuristiques pour l'optimisation difficile (Eyrolles)
  • Malek Rahoual et Patrick Siarry : Réseaux informatiques : conception et optimisation

Cette UE apparaît dans les diplômes et certificats suivants

Chargement du résultat...
Patientez
Intitulé de la formation
Type
Modalité(s)
Lieu(x)
Intitulé de la formation Architecte en cybersécurité
Lieu(x) Alternance
Intitulé de la formation Architecte en cybersécurité
Lieu(x) À la carte
Lieu(x) À la carte
Lieu(x) À la carte
Lieu(x) Alternance
Lieu(x) À la carte
Lieu(x) À la carte
Lieu(x) À la carte
Lieu(x) Alternance
Lieu(x) Package
Lieu(x) Ile-de-France
Lieu(x)
Lieu(x)
Lieu(x) Alternance
Lieu(x) À la carte
Intitulé de la formation Type Modalité(s) Lieu(x)

Contact

EPN05 - Informatique
2 rue Conté
75003 Paris
Tel :01 40 27 22 58
Swathi Rajaselvam

Centre(s) d'enseignement proposant cette formation

  • Centre Cnam Paris
    • 2019-2020 2nd semestre : Présentiel soir ou samedi
    • 2020-2021 2nd semestre : Présentiel soir ou samedi
    • 2021-2022 2nd semestre : Présentiel soir ou samedi